FastReport 4
Programmer's
manual

1111111111111111111111111

FastReport 4 Programmer's manual

Table of contents

Chapter | Working with the TfrxReport component 2
1 Loading and SAVING @ FEPOITuuieiiiiie ettt e e et e e e e e e s et e e e e e e e e e s anbbeeeaaaaeaaans 2
A B 1S (o oL g Yo I (=] o Lo o AP UTTRR ORI 2
G I ¥ a1 1T g Yo = T (=T o Lo S 3
O S VA=Y AT g o - Y =T o Yo o PR 3
I o g oL AT g Lo = W =T o Lo o SO UTUP RO 4
6 Loading and saving afinished report ... 4
A = q o o1 ¢ A1 e Jr= =1 o o o PP 5
8 Creating a cuUStOM PrevieW WINAOWccoiiieiiiiiiiee st e e e s s r e e e e e s s e e e e e e e s snnanaeeeees 5
9 Building a composite report (batch printing)oooooo i 5

Numbering of pages in @ COMPOSITE FEPOIToiii i ettt e e e e e e e s e bbb e e e e e s annreeeeas 6

Combining pages iNt0 @ COMPOSITE FEPOITuuiiiiiiee ittt e e ettt e e e e e e ib e e e e e e e e e abbbeeeaaeeaannnes 6
O o] A=t = ol LAV I =T o T] £ TP PP TUT T RUPPPPRTP 6
11 Accessing report 0bjects from COUE ... 8
12 Creating areport form from COAEooiiiiiiiiiiec e e e e 9
13 Creating a dialogue form from COAEuiiiiiii i 12
14 Modifying @ report PAge’S PrOPEITIESuuiiiii ittt et e e e e e reee e e e e e e aane 13
15 Constructing a report with the help of Code ... 14
G o AT AT = = U - | SRR 17
17 Printing @ TSEINGLIST eeeiiiiiiiiee ettt e e e e et e e e e e e s bnbbeeeaaaaeaaan 17
18 PrintiNg @ fll oo e e et e e e e e e e e e e e e aan 17
19 Printing @ TSEINGGIIA ooeeiieiiiiieiiie e e e e e e s e e e e e s s e e e e e e e s esnsnnrnneeeeeeeaans 17
20 Printing @ TTable OF TQUETY ..ooiiieiiiiieee e ettt e e s s e e e e e e s e e e e e e s s s an e e e e e e e e nnsennneeees 18
21 REPOIt INNEITANCE ..ot e et e e e e e e s s bbb e e e e e e e e e annnbeaeeeaens 18
22 MUILTERTEAAING .eeeiiiiiiiiiee ettt e e e e et e e e e e e s bbb b e e e e e e e e e annbbeneeeaans 20
22 T = L= o To Y G o= Lo o 11 o Vo RSP 21
24 MDI ArCHITECIUIE .ttt ettt e e s bttt e e sttt e e e s st b e e e e s abbeeeesabbeeeesnnbeeeenns 21

Chapter I Working with a list of variables 23
1 Creating alist 0f Variablesocceviiiiiiii e 24
2 Clearing alist of Variablesooocuiiiiiii e 24
I Yo o [T o Yo [Wot= 1(=To [o] o VAN UURTT RSO 25
4 AAING @ VANADIE ..o e a e e e 25
5 Deleting @ Variable ... 26
SR =T L= AT Lo = W o= =To [0 27
7 Modifying a variable’'s VAIUEc..uueiiiiiiii e 27

© 1998-2012 Fast Reports Inc.

Table of contents Il

8 SCIIPL VAITADIES ..ttt e e e et e e e e e e e snabaaeeaae s 28
9 Passing a variable value in TfrxReport.ONGetValuecccoocuvveiiieee i 29
Chapter Il Working with styles 31
1 Creation Of STYIE SELS ...t e e et e e e e e e e e e sannbeaeeaaens 33
2 Modifying/adding/deleting @ STYI@ccciiiiiiieiie e 34
3 Saving/restoring @ SEt Of SYIESuuiiiiiiii i 36
4 Clearing rePOort STYIES it e e e e e e e 36
5 Creating @ StY1 HDIArY ... et e e e e reeaeeas 36
6 Displaying a list of style sets, and application of a selected styleccccccceeeeiviciinennnn. 37
7 Modifying/adding/deleting @ StyleS SEtuuiiiiiieiiicce e 37
8 Saving and loading a Style lIDrary ... 38

© 1998-2012 Fast Reports Inc.

Chapter

Working with
the TfrxReport
component

Working with the TfrxReport component 2

1.1 Loading and saving a report

By default, a report is stored together with the project form, i.e. in a DFM file. In most cases
nothing else is required and you would not need to take any action to load the report. If you
decide to store a report form in a file or in a BLOB-field in a DB (which improves flexibility in
that the report can be modified without having to recompile the program) you would have to
use “TfrxReport” methods for loading or saving the report:

function LoadFronFil e(const FileName: String;
Excepti onl f Not Found: Bool ean = Fal se): Bool ean;

Loads a report from the file with the specified name. If the second parameter equals
“True” and the file is not found then an exception is raised. If the file is loaded successfully
it returns “True”.

procedure LoadFronttrean(Stream TStrean);

Loads a report from a stream.

procedure SaveToFile(const FileNane: String);

Saves a report to a file with the specified name.

procedure SaveToStreanm(Stream TStream;
Saves a report to a stream.
Report files are given the default extension “fr3”.
Examples:

Pascal:

frxReport 1. LoadFronﬂIe(c:\1.fr3");
frxReportl. SaveToFile('c:\2.f r3);

C++:

frxReport 1l->LoadFronFile("c:\\1.fr3");
frxReport 1- >SaveToFil e("c:\\2 r3);

1.2 Designing areport

The report designer can be opened using the “TfrxReport.DesignReport” method. The designer
must be included in your project (either add the “TfrxDesigner” component to your form or add
the “frxDesgn” unit to the “uses” list).

The “DesignReport” method has two default parameters:

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

3 FastReport 4 Programmer's manual

procedure Desi gnReport (Mdal: Bool ean = True; M Child: Bool ean = Fal se);

The Modal parameter determines whether the designer is modal. The MDIChild parameter
makes the designer window an MDI child window.

Example:

frxReport 1. Desi gnReport ;

1.3 Running areport

Calling one of the following two “TfrxReport” methods starts (runs, builds) a report:

procedure ShowReport (C earlLast Report: Bool ean = True);

Starts a report and displays the result in the preview window. If the “ClearLastReport”
parameter equals “False” then the report will be added to the previously built report,
otherwise the previously built report is cleared (by default).

function PrepareReport(C earLast Report: Bool ean = True): Bool ean;

Starts a report without opening the preview window. The parameter has the same function
as in the “ShowReport” method. If the report was built successfully it returns “True.”

In most cases it is more convenient to use the first method. It opens the preview window
immediately, while the report is being built.

The “ClearLastReport” parameter is useful when reports are to be added one to another, as
happens in batch report printing.

Example:

frxReport 1. ShowReport ;

1.4 Previewing a report

A report can be displayed in the preview window in two ways: either by calling the “TfrxReport.
ShowReport” method (described above) or by calling the “TfrxReport.ShowPreparedReport”
method. The second method does not build the report but will display a finished report. This
means that the report should either have been built beforehand, using the “PrepareReport”
method, or loaded from a previously built report which has been saved in a file (see “Loading
and saving a report”).

Example:

Pascal:

if frxReportl. PrepareReport then
frxReport 1. ShowPr epar edReport ;

C++:

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

1.5

1.6

Working with the TfrxReport component 4

i f(frxReport1->PrepareReport(true))
frxReport 1- >ShowPr epar edReport () ;

Using this code the report is built first before being displayed in the preview window. Building a
large report can take a significant time. It is better to use the “ShowReport” method rather than
“PrepareReport” and “ShowPreparedReport” as “ShowReport” gives visual feedback of the
report building. Settings for the report preview can be made in the “TfrxReport.PreviewOptions”

property.

Printing a report

In most cases a report will be printed from the preview window, but to print a report manually
use the “TfrxReport.Print” method, for example:

frxReportl. LoadFronFile(...);
frxReport 1. PrepareReport;
frxReportl. Print;

When “Print” is called the Printer dialogue is opened, in which the printing parameters can be
set. The Printer dialogue can be disabled and the printing parameters set using the
“TfrxReport.PrintOptions” property.

Loading and saving a finished report

Loading and saving a finished report can be performed from the preview window. It can also be
performed manually using the “TfrxReport.PreviewPages” methods:
function LoadFronfil e(const FileName: String;
Excepti onl f Not Found: Bool ean = Fal se): Bool ean;
procedure SaveToFile(const FileNane: String);

procedure LoadFronttrean(Stream TStrean;
procedure SaveToStream(Stream TStream;

The parameters have functions similar to the corresponding TfrxReport methods. Files
containing finished reports have an “fp3” extension by default.

Example:

Pascal:

frxReport 1. Previ ewPages. LoadFronFile(' c:\1.fp3");
frxReport 1. ShowPr epar edReport ;

C++:

frxReport 1- >Pr evi ewPages- >LoadFronFil e("c:\\ 1. fp3");
frxReport 1- >ShowPr epar edReport () ;

Note that after the finished report has fully loaded it is previewed by calling the
“ShowPreparedReport” method!

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

FastReport 4 Programmer's manual

1.7

1.8

1.9

Exporting a report

Reports can be exported from the preview window. They can also be exported manually using
the “TfrxReport.Export” method. The export filter to be used should be passed in the method's
parameter:

frxReport 1. Export (frxHTM.Export1);

The export filter component must be available and correctly configured (the component must
be placed on the project form).

Creating a custom preview window

FastReport displays reports in the standard preview window. If for any reason this is not
satisfactory then a custom preview form can be created. The “TfrxPreview” component from the
FastReport component palette was designed for this purpose. To display a report the
“TfrxReport.Preview” property should be directed to this “TfrxPreview” component.

There are typically two problems when using the “TfrxPreview” component. It does not always
respond to key presses (arrows, PgUp, PgDown etc) and does not respond to the mouse wheel
(if present). To make “TfrxPreview” respond to keys pass the focus to it (for example in the
OnShow event handler of the form):

frxPrevi ew. Set Focus;

To make “TfrxPreview” respond to mouse scrolling an “OnMouseWheel” event handler has to
be created and the “TfrxPreview.MouseWheelScroll” method called in this handler:

procedure TForml. For mvbuseWheel (Sender: TObject; Shift: TShiftState;
Weel Del ta: | nteger;
MousePos: TPoi nt; var Handl ed: Bool ean);
begi n
frxPrevi ewl. MouseWheel Scrol | (Wheel Del ta);
end;

Building a composite report (batch printing)

Sometimes a group of reports need to be printed at the same time or displayed in one preview
window. FastReport has the means of adding a second report to the end of an already built
report. The “TfrxReport.PrepareReport” method has an optional “ClearLastReport” Boolean
parameter which defaults to “True”. This parameter, when “True”, clears the output from the
preceding built report. The following code shows how to build a batch of two reports:

Pascal:

frxReportl. LoadFronFile('1.fr3");
frxReport 1. PrepareReport;
frxReportl. LoadFronFile('2.fr3");
frxReport 1. PrepareReport (Fal se);
frxReport 1. ShowPr epar edReport ;

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

Working with the TfrxReport component 6

19.1

1.9.2

1.10

C++:

frxReport 1->LoadFronFile("1.fr3");
frxReport 1- >Pr epar eReport (true);
frxReport 1->LoadFronFile("2.fr3");
frxReport 1- >Pr epar eReport (fal se);
frxReport 1- >ShowPr epar edReport () ;

We load the first report and build it without display in the preview window. Then we load the
second report into the same “TfrxReport” object and this time build it with the “ClearLastReport”
parameter set to “False”. This allows the second report to be added to the first one built. Finally
we display the finished reports in the preview window.

Numbering of pages in a composite report

The “Page”, “Page#”, “TotalPages” and “TotalPages#” system variables can be used to display
a page number or total number of pages. In composite reports these variables return the
following values:

- Page page number in the current report

- Page# page number in the batch

- TotalPages total number of pages in the current report
(the report must be a two-pass one)

- TotalPages# total number of pages in the batch

Combining pages into a composite report

As said previously, the “PrintOnPreviousPage” property of the report design page allows pages
to be joined together when printing, using up any free space at the end of the previous page to
produce a composite report. This property also allows a new report to start printing on any free
space at the end of the preceding report’s last page. To do this the “PrintOnPreviousPage”
property should be set on the first design page of each succeeding report.

Interactive reports

Interactive reports can respond to mouse-clicks on any specified report objects in the preview
window. For example, clicking on the data line may run a new report with detailed data for the
selected line.

Any report can be made to be interactive by creating a “TfrxReport.OnClickObject” event
handler, for example:

Pascal:

procedure TForml. frxReport1Cd i ckOnoject (Page: TfrxPage; View TfrxView,
Button: TMouseButton;
Shift: TShiftState;
var Modi fied: Bool ean);

begi n

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

7 FastReport 4 Programmer's manual

if View Name = 'Menpl' then

Showiessage(' Menpl contents:' + #13#10 + TfrxMenmoVi ew(Vi ew) . Text);
if View Name = 'Menp2' then
begi n

Tf rxMenoVi ew(Vi ew) . Text : = InputBox('Edit', '"Edit Menmo2 text:',

Tf r xMenoVi ew(Vi ew) . Text);

Modi fied := True;

end;
end;

C++:

void _ fastcall TFormil::frxReport1d ickCbject(TfrxView *Sender,
TMouseButt on Button,
TShiftState sShift,
bool &Modifi ed)

{
Tf r xMenoVi ew * Meno;
if(Menb = dynam c_cast <TfrxMenoVi ew *> (Sender))
{
i f(Menmo->Nanme == "Menpl")
ShowMessage(" Menpl contents:\n\r" + Menpn->Text);
i f (Menp->Nanme == "Menp2")
Meno- >Text = InputBox("Edit", "Edit Menmp2 text:", Menp->Text);
Modi fied = true;
}
}
}

In the “OnClickObject” handler, you can do the following:
- modify the contents of an object or a page passed into the handler (the “Modified” output
parameter should be set so that the changes are implemented)
- call the “TfrxReport.PrepareReport” method to rebuild a report

In the example, clicking on the “Memo1l” object results in the display of a message showing the
contents of the object. When clicking on the “Memo2” object a dialogue is displayed where the
contents of this object can be changed. Setting the “Modified” flag to “True” makes the change
permanent.

In the same way other responses can be made, such as running a new report. PLEASE NOTE
. in FastReport v3 and above the TfrxReport component can only display one report in the
preview window (unlike FastReport version 2.x). So either the new report must be run in a
separate TfrxReport object or the current report must be erased from the current TfrxReport
object.

The user can be given a visual clue to clickable objects by changing the mouse cursor when it
passes over the objects in the preview window. To do this, select the object in the report
designer and set its cursor property to something other than crDefault.

There is one more concern with making objects clickable. Simple reports can test either the
object’'s name or the object's content to evoke a response. However, this is not always so
straight forward in more complicated reports. For example, in a master-detail report when
clicking on the “Memo1” object having content '12', where does the data come from? The
primary key identifies this line unambiguously. FastReport provides a “TagStr” property for
storing any useful string data (in our case the primary key).

Let's illustrate this with a report included in the FastReportDemo.exe example - a 'Simple list'

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

Working with the TfrxReport component 8

1.11

demo. It is a list of company clients, with data such as “client name”, “address”, “contact
person” etc. The data source is the “Customer.db” table from the DBDEMOS demo database.
This table has a primary key, the “CustNo” field, which is not displayed in the report output. Our
problem is to determine which record is referred to when clicking on any object in the finished
report. The value of the primary key is required, which can be entered as an expression into the
“TagStr” property of all the objects in the MasterData band:

[Cust omers. " Cust No" |

When a report is being built the “TagStr” property’s contents are evaluated in the same way as
for the contents of text objects, that is values are substituted for named variables and
expressions (enclosed in square brackets) are evaluated. That is why the “TagStr” property of
the objects lying on the MasterData band contains values such '1005' or '2112', etc. after report
building. A simple conversion from a string to an integer gives us the value of the primary key
from which the required record can be found.

If the primary key is composite (i.e. it contains more than one field) the “TagStr” property’s
contents may be the following:

[Tabl el."Fiel d1"];[Tabl el. "Fi el d2"]

After building the report the “TagStr” property may contain a string value of '1000;1', from which
the individual field values can be fairly simply extracted.

Accessing report objects from code

FastReport's objects (report page, band, memo object, etc.) are not directly accessible from
your code. This means that you cannot address an object directly by its name, as for example
when addressing a button on your form. To address an object it should be first be found using
the “TfrxReport.FindObject” method:

Pascal:

var
Menpl: TfrxMenpVi ew;

Menpl : = frxReportl. Fi ndObj ect (' Menpl') as TfrxMenoVi ew,
C++:

Tf rxMenoVi ew * Menp = dynam c_cast <TfrxMenoVi ew *>
(frxReport 1->Fi ndObj ect ("Menol"));

Once found the object’s properties and methods can be accessed.

You can address the report’s pages using the “TfrxReport.Pages” property:

Pascal:

var
Pagel: TfrxReport Page;

Pagel := frxReportl. Pages[1] as TfrxReport Page;

C++:

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

9 FastReport 4 Programmer's manual

Tf r xRepor t Page * Pagel = dynami c_cast <TfrxReportPage *>
(frxReport1->Pages[1]);

1.12 Creating a report form from code

As a rule you will create most reports using the designer. However, sometimes it is necessary
to create a report manually in code, for example when the report’s form is unknown.

To create a report manually requires the following steps in order:
- clear the report component
- add data sources
- add the “Data” page
- add the report page
- add bands on the page
- set band properties and then connect them to the data
- add objects on each band
- set object properties and then connect them to the data

Let's look at the creation of a simple report of “list” type. Assume we have the following
components: frxReportl: TfrxReport and frxDBDataSetl: TfrxDBDataSet (the latter connected
to data from the DBDEMOS “Customer.db” table). Our report will contain one page with
“ReportTitle” and “MasterData” bands. On the “ReportTitle” band there will be an object
containing "Hello FastReport!" and the “MasterData” band will contain an object linked to the
"CustNo" field.

Pascal:

var
Dat aPage: TfrxDat aPage;
Page: TfrxReport Page;
Band: TfrxBand;
Dat aBand: TfrxMast er Dat a;
Mermo: TfrxMenpVi ew,

{ clear report }
frxReportl. d ear;

{ add dataset to list of datasets accessible in report }
frxReport 1. Dat aSet s. Add(f r xDBDat aSet 1) ;

{ add "Data" page }
Dat aPage : = TfrxDat aPage. Creat e(frxReport1l);

{ add page }

Page : = TfrxReport Page. Create(frxReportl);

{ create a unique nane }

Page. Cr eat eUni queNane;

{ set sizes of fields, paper and orientation to defaults }
Page. Set Def aul t s;

{ change paper orientation }

Page. Ori entation : = polLandscape;

{ add report title band}

Band := TfrxReportTitle.Create(Page);

Band. Cr eat eUni queNane;

{ only “Top” coordinate and hei ght of band need setting

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

Working with the TfrxReport component 10

both in pixels }
Band. Top : = O;
Band. Hei ght : = 20;

{ add object to report title band }

Meno : = TfrxMenoVi ew. Cr eat e(Band) ;

Meno. Cr eat eUni queNane;

Meno. Text := 'Hello FastReport!';

Meno. Hei ght : = 20;

{ this object will be stretched to band’s width }
Meno. Ali gn : = baW dt h;

{ add nasterdata band }

Dat aBand : = TfrxMast er Dat a. Cr eat e(Page) ;

Dat aBand. Cr eat eUni queNane;

Dat aBand. Dat aSet : = frxDBDat aSet 1;

{ “Top” should be greater than previously added band' s top + height }
Dat aBand. Top : = 100;

Dat aBand. Hei ght : = 20;

{ add object on masterdata }

Meno : = TfrxMenmoVi ew. Cr eat e(Dat aBand) ;
Meno. Cr eat eUni queNane;

{ connect to data }

Meno. Dat aSet : = frxDBDat aSet 1;

Meno. DataField := ' CustNo';

Meno. Set Bounds(0, 0, 100, 20);

{ align text to object’s right margin }
Meno. HAl i gn : = haRi ght;

{ show report }
frxReport 1. ShowReport;

C++:

Tf r xDat aPage * Dat aPage;
Tf r xReport Page * Page;

Tf rxBand * Band;

Tf rxMast er Dat a * Dat aBand,;
Tf r xMenoVi ew * Meno;

/1 clear report
frxReport 1l->Cl ear();

/1 add dataset to |list of datasets accessible in report
frxReport 1- >Dat aSet s- >Add(f r xDBDat aset 1) ;

/1 add "Data" page
Dat aPage = new TfrxDat aPage(frxReportl);

/1 add page

Page = new TfrxReport Page(frxReportl);

/1 create uni que nane

Page- >Cr eat eUni queNane() ;

/1 set sizes of fields, paper and orientation to defaults
Page- >Set Def aul t s() ;

/1 change paper orientation

Page->Ori entation = polLandscape;

/1 add report title band

Band = new TfrxReportTitl e(Page);

Band- >Cr eat eUni queNane() ;

/1 only “Top” coordinate and hei ght of band need setting

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

11 FastReport 4 Programmer's manual

/1 both in pixels
Band- >Top = O;
Band- >Hei ght = 20;

/! add object to report title band

Meno = new TfrxMenmoVi ew Band) ;

Meno- >Cr eat eUni queNane() ;

Meno- >Text = "Hell o Fast Report!";

Meno- >Hei ght = 20;

/1 this object will be stretched to band’'s wi dth
Meno- >Al i gn = baW dt h;

/1 add masterdata band

Dat aBand = new TfrxMast er Dat a(Page) ;

Dat aBand- >Cr eat eUni queName() ;

Dat aBand- >Dat aSet = frxDBDat aset 1;

/1 “Top” should be greater than previously added band s top + height
Dat aBand- >Top = 100;

Dat aBand- >Hei ght = 20;

/1 add object on masterdata

Meno = new TfrxMenmoVi ew(Dat aBand) ;
Meno- >Cr eat eUni queNane() ;

/1 connect to data

Meno- >Dat aSet = frxDBDat aset 1;

Meno- >Dat aFi el d = " Cust No";
Meno- >Set Bounds(0, 0, 100, 20);

/] align text to object’s right margin
Meno- >HAI i gn = haRi ght;

/1 show report
frxReport 1- >ShowReport (true);

Let's explain some details.

All the data sources that are to be used in the report must be added to the list of data sources,
otherwise the report will not work. In our case use “frxReportl.DataSets.Add(frxDBDataSet1)”

The “Data” page is required when inserting internal datasets, such as “TfrxADOTable”, into a
report. Such datasets can only be placed on the “Data” page.

The call to Page.SetDefaults is not essential since in this case the page will be A4 format with
margins of 0 mm. SetDefaults sets margins to 10mm and page size and alignment to the
default printer's values.

When adding bands to a page make sure that they do not overlap each other. To ensure this
set the “Top” and “Height” properties. There is no point in changing the “Left” and “Width”
properties since a band always has the same width as the page on which it is located : if the
bands are vertical this is not so — instead set the “Left” and “Width” properties and don't bother
with the “Top” and “Height” properties. Note that the ordering of the bands on the page is
critical. Always locate bands in the same order as you would do in the designer.

Object coordinates and sizes are set in pixels. Since the “Left”, “Top”, “Width” and “Height”
properties of all objects are of “Extended” type you can set non-integer values. The following
constants are defined for converting pixels into centimeters or inches:

frOlcm = 3. 77953;
fricm = 37.7953;
frOlin = 9.6;
frlin = 96;

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

Working with the TfrxReport component 12

So for example, a band’s height can be set to 5 mm as follows:

Band. Hei ght
Band. Hei ght

frOlcm* 5;
fricm* 0.5;

1.13 Creating a dialogue form from code

As we know a report can contain dialogue forms. The following example shows how to create a
dialogue form with an “OK” button:

Pascal:

{ to work with di al ogue objects the follow ng unit nmust be used }
uses frxDCtrl;

var
Page: TfrxDi al ogPage;
Button: TfrxButtonControl;

{ add page }

Page : = TfrxDi al ogPage. Creat e(frxReport1l);
{ create uni que nane }

Page. Cr eat eUni queNane;

{ set sizes }

Page. Wdt h : = 200;

Page. Hei ght : = 200;

{ set position }

Page. Position : = poScreenCenter;

{ add button }

Button : = TfrxButtonControl.Create(Page);
But t on. Cr eat eUni queNane;

Button. Caption := 'K ;

But t on. Modal Resul't : = nr Ck;

But t on. Set Bounds(60, 140, 75, 25);

{ show report }
frxReport 1. ShowReport ;

C++:

/1 to work with dial ogue objects the followi ng unit nust be used
#i nclude "frxDCtrl . hpp"

Tf rxDi al ogPage * Page;
TfrxButtonControl * Button;

/1 add page

Page = new TfrxDi al ogPage(frxReportl);
/1 create uni que nane

Page- >Cr eat eUni queNane() ;

/1 set sizes

Page->W dth = 200;

Page- >Hei ght = 200;

/'l set position

Page- >Posi ti on = poScreenCenter;

// add button

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

13 FastReport 4 Programmer's manual

1.14

Button = new TfrxButtonControl (Page);
But t on- >Cr eat eUni queNare() ;

Butt on- >Caption = "OK";

Butt on- >Modal Result = nr C;

But t on- >Set Bounds(60, 140, 75, 25);

/1 show report
frxReport 1- >ShowReport (true);

Modifying a report page’s properties

Sometimes it is necessary to change report page settings (for example paper alignment or
size) in code. The “TfrxReportPage” class contains the following properties which define the
size of the page:

property Orientation: TPrinterOrientation default poPortrait;
property Paper Wdth: Extended;

property PaperHei ght: Extended;

property PaperSize: |Integer;

The “PaperSize” property sets the paper format. This is one of the standard values defined in
Windows.pas (for example DMPAPER_A4). If a value is assigned to this property then
FastReport sets the “PaperWidth” and “PaperHeight” properties automatically (paper size in
millimeters). Setting “PaperSize” to DMPAPER_USER (or to 256) means that a custom paper
size is set. In this case the “PaperWidth” and “PaperHeight” properties will need to be be set in
code.

The following example shows how to change the properties of the first page, assuming we
already have a report:

Pascal:

var
Page: TfrxReport Page;

{ first report page has index [1] : index [0] is the Data page }
Page : = TfrxReportPage(frxReportl. Pages[1]);

{ change size }

Page. Paper Si ze : = DMPAPER _A2;

{ change paper orientation }

Page. Ori entation : = polLandscape;

C++:
Tf r xReport Page * Page;

/1 first report page has index [1] : index [0] is the Data page
Page = (TfrxReportPage *)frxReport1l. Pages[1];

/1 change size

Page- >Paper Si ze = DMPAPER_A2;

/1 change paper orientation

Page->Ori entation = polLandscape;

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

Working with the TfrxReport component 14

1.15 Constructing a report with the help of code

The FastReport engine usually is responsible for the building of reports. It displays the report
bands in the specified order as many times as the data source to which it is connected requires
until the report is finished. Sometimes it is necessary to create a report in a non-standard form
that the FastReport engine is unable to produce. In this case the report can be built manually,
using the “TfrxReport.OnManualBuild” event. When a handler is defined for this event the
FastReport engine hands some management functions over to it. The allocation of
responsibilities for building the report is changed to the following:

FastReport engine:

- report preparation (script, data sources initialization, band tree formation)

- all calculations (aggregate functions, event handlers)

- creation of new pages and columns (automatic display of a page and column headers and
footers and of report title and summary)

- other routine work

Handler:
- ordering of the bands

The purpose of the “OnManualBuild” handler is to issue commands for displaying particular
bands to the FastReport engine. The engine itself does the rest : creating new pages as soon
as there is no free space left in the current one, execution of scripts, etc.

The engine is represented by the “TfrxCustomEngine” class. A link to the instance of this class
is located in the “TfrxReport.Engine” property.

procedure NewCol um;
Creates a new column. If a column is the last one on the page then it creates a new page.

procedur e NewPage;
Creates a new page.

procedure ShowBand(Band: TfrxBand); overl oad;
Displays a band.

procedure ShowBand(Band: TfrxBandC ass); overl oad;
Displays a band of the given type.

function FreeSpace: Extended;
Returns the amount of free space on the page (in pixels). This value is decremented after
the next band has been displayed.

property Cur Colum: |Integer;
Returns or sets the current column number.

property Cur X: Extended;
Returns or sets the current X position.

property CurY: Extended;
Returns or sets the current Y position. This value is incremented after the next band has
been displayed.

property Doubl ePass: Bool ean;
Defines whether a report is a two-pass one.

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

15 FastReport 4 Programmer's manual

property Final Pass: Bool ean;
Returns whether the current pass is the last one.

property FooterHei ght: Extended,;
Returns the page footer height.

property Header Hei ght: Extended,;
Returns the page header height.

property PageHei ght: Extended,;
Returns the height of the page’s printable region.

property PageW dt h: Ext ended;
Returns the width of the page’s printable region.

property Total Pages: |nteger;
Returns the number of pages in a finished report (only in the second pass of a two-pass
report).

Let's show an example of a simple handler. There are two “MasterData” bands in a report,
which are not connected to data. The handler displays these bands in an interlaced order, six
times for each one. After six bands a small gap is introduced.

Pascal:
var
i: Integer;
Bandl, Band2: TfrxMasterData;

{ find specified bands }

Bandl : = frxReportl. Fi ndObject (' MasterDatal') as TfrxMasterDat a;
Band2 := frxReportl. Fi ndObject (' MasterData2') as TfrxMasterDat a;
for i :=1to 6 do

begi n

{ display bands one after another }

frxReport 1. Engi ne. ShowBand(Bandl) ;

frxReport 1. Engi ne. ShowBand(Band2) ;

{ introduce a snmall gap }

if i =3 then

frxReportl. Engine.CurY := frxReportl. Engi ne. CurY + 10;
end;

C++:

int i;
TfrxMast er Data * Bandl;
TfrxMast er Data * Band2;

/1 find specified bands

Bandl : = dynam c_cast <TfrxMasterData *> (frxReport1->Fi ndCbj ect
("MasterDatal"));

Band2 : = dynam c_cast <TfrxMasterData *> (frxReport1->Fi ndQbj ect
(" Mast erData2"));

for(i =1; i <= 6; i++)

/1 display bands one after another
frxReport 1- >Engi ne- >ShowBand(Band1l) ;

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

Working with the TfrxReport component

frxReport 1- >Engi ne- >ShowBand(Band?2) ;
/1 introduce a small gap
if(i == 3)
frxReport 1- >Engi ne->CurY += 10;
}

The next example shows two groups of bands side by side.

Pascal:

var
i, j: Integer;
Bandl, Band2: Tfr xMasterDat a;
SaveY: Extended;

Bandl : = frxReportl. Fi ndObj ect (' MasterDatal') as TfrxMasterDat a;
Band2 : = frxReportl. Fi ndObj ect (' MasterData2') as TfrxMasterDat a;
SaveY : = frxReport 1. Engi ne. Cur,
for j :=1to 2 do
begi n

for i :=1to 6 do

begi n

frxReport 1. Engi ne. ShowBand(Bandl) ;
frxReport 1. Engi ne. ShowBand(Band?2) ;
if i =3 then
frxReportl. Engine.CurY : = frxReportl. Engi ne. CurY + 10;
end;
frxReport 1. Engi ne. CuryY :
frxReport 1. Engi ne. Cur X :
end;

Savey,
frxReport 1. Engi ne. Cur X + 200;

C++:

int i, j;
TfrxMasterData * Bandil;
TfrxMasterData * Band2;
Ext ended SaveY,;

Bandl = dynam c_cast <TfrxMasterData *> (frxReport 1->Fi ndObj ect
("MasterDatal"));
Band2 = dynam c_cast <TfrxMasterData *> (frxReport 1->Fi ndObj ect
(" Mast er Dat a2"));

SaveY
for(j

frxReport 1- >Engi ne->Cur;
1,] <=2; j++)

for(i = 1; i <= 6; i++)

frxReport 1- >Engi ne- >ShowBand(Band1l) ;
frxReport 1- >Engi ne- >ShowBand(Band2) ;
if(i == 3)

frxReport 1- >Engi ne->CurY += 10;

}

frxReport 1- >Engi ne->Cur Y = SaveY;

frxReport 1- >Engi ne- >Cur X += 200;
}

16

FastReport v4 © 1998-2012 Fast Reports Inc.

Manual v1.2.0

17 FastReport 4 Programmer's manual

1.16

1.17

1.18

1.19

Printing an array

The code for this example is located in the “FastReport Demos\PrintArray” ("FastReport
Demos\BCB Demos\PrintArray") folder. Let's explain some details of this code.

To print an array we use a report having one “MasterData” band which will be displayed as
many times as there are elements in the array. To do this place a “TfrxUserDataSet”
component on the form and then set these properties (this can be done in code, as shown in
the example):

RangeEnd : = reCount
RangeEndCount := a nunber of elenments in an array

After that connect the data band to the “TfrxUserDataSet” component. To represent an array
element place a text object containing the expression “[<element>]" inside the “MasterData”
band. The “element” variable is filled using the “TfrxReport.OnGetValue” event.

Printing a TStringList

The code for this example is located in the “FastReport Demos\PrintStringList” (“FastReport
Demos\BCB Demos\PrintStringList”) folder. The method is the same as for the example of
printing an array.

Printing a file

The code for this example is located in the “FastReport Demos\PrintFile” (“FastReport
Demos\BCB Demos\PrintFile”) older. Let's explain some details of this code.

For printing, the report should contain a “MasterData” band that will be printed just once (to do
this connect the band to a data source that contains just one record; select the source named
"Single row" from the list). Stretching (“Stretch”) and splitting (“Allow Split”) are enabled for the
band, which means that the band is stretched to make room for all the objects located on it and
if the page has insufficient room for the band then the band is split over two or more pages.

File contents are displayed using a “Text” object containing the expression “[<file>]" variable.
This variable, as in previous examples, is filled using the “TfrxReport.OnGetValue” event.
Stretching is also enabled for the object (“Stretch” from the contextual menu or “StretchMode”
property = smActualHeight).

Printing a TStringGrid

The code for this example is located in the “FastReport Demos\PrintStringGrid” (“FastReport
Demos\BCB Demos\PrintStringGrid”) folder. Let's explain some details of this code.

The “TStringGrid” component represents a table having several rows and columns. This means
that a report expands not only in height but also in width. Let's use the “Cross-tab” object to
print this component (available when a “TfrxCrossObject” component is added to the project).
The “Cross-tab” object is responsible only for printing table data with an unknown number of

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

Working with the TfrxReport component 18

1.20

1.21

rows and columns. The object has two versions: “TfrxCrossView” to print custom data in code,
and “TfrxDBCrossView” to print special kind of data from a DB table.

Let's use a “TfrxCrossView”. The object must be initialized, by first opening the report designer
and then the object's editor by double-clicking on it. The number of rows and columns must be
set, and also the number of values in the table cells. We will use '1' for all of these values and
will disable the row and column titles and the totals for lines and columns.

The object must be filled with values from the StringGrid in the “TfrxReport.OnBeforePrint”
event. Values are added using the “TfrxCrossView.AddValue” method, whose parameters are:
composite index for a line, a column and the cell's value (which is composite as well, as an
object can contain more than one value in a cell).

Printing a TTable or TQuery

The code for this example is located in the “FastReport’'s Demos\PrintTable” (“FastReport
Demos\BCB Demos\PrintTable”) folder. The principles are the same as for the example of
printing a TStringGrid. In this case, the row index is its sequence number, the column index is
the name of a table field and the cell value is the table's field value. It is important to note that
the functions for cell elements must be disabled in the “Cross-tab” object editor (since cells can
contain data of various types, which leads to an error during table creation) and the table title
sorting must also be disabled (otherwise the columns will be sorted alphabetically).

Report inheritance
Report inheritance is described in the User's manual. We will mention some key points here.
If your reports are stored in files then FastReport needs to be told which folder to search for

base reports. This folder's content is displayed in the “File>New...” and “Report>Options...”
dialogs:

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

19 FastReport 4 Programmer's manual

Mew Item

Items | Templates

g & 3]

1.fr3 10.FR3 100.fr3
101.fr3 102 fr3 103.Fr3
104.fr3 105 fr3 11.FR3

[]inherit the report

oK] ’ Cancel

The “TfrxDesigner.TemplateDir” property is used for this purpose. By default it is empty and
FastReport searches for base reports in the same folder as the project's executable file (.exe).
An absolute or a relative path can be set in this property.

If your reports are stored in a database then code must be written to get a list of available base
reports from the DB and to load the base report from the DB. Use “TfrxReport.
OnLoadTemplate” event to load a base report:

property OnLoadTenpl ate: TfrxLoadTenpl at eEvent read FOnLoadTenpl at e
wite FOnLoadTenpl at e;

Tf rxLoadTenpl at eEvent = procedure(Report: TfrxReport;
const Tenpl ateNanme: String) of object;

This event handler must load a base report with the specified TemplateName into the Report
object. Here's an example of a handler:

procedure TForml. LoadTenpl at e(Report: TfrxReport;

const Tenpl at eName: String);
var

Bl obStream TStream
begi n
ADOTabl el. First;
whil e not ADOTabl el. Eof do
begi n
i f Ansi Conpar eText (ADOTabl el. Fi el dByName(' Report Nane'). AsStri ng,
Tenpl at eNane) = 0 then
begi n
Bl obSt ream : = TMenoryStream Cr eat e;
TBI obFi el d(ADOTabl el. Fi el dByNanme(' Report Bl ob'))
. SaveToSt r eam(Bl obSt ream ;
Bl obSt ream Position : = O;
Report . LoadFr ontt r ean(Bl obSt r ean) ;

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

Working with the TfrxReport component 20

Bl obSt r eam Fr ee;
br eak;
end;
ADOTabl el. Next ;
end;
end;

To get a list of available templates use the “TfrxDesigner.OnGetTemplateList” event:

property OnGet Tenpl at eLi st: TfrxGet Tenpl at eLi st Event
read FOnGet Tenpl at eL.i st
wite FOnGet Tenpl at eLi st ;

Tf rxGet Tenpl at eLi st Event = procedure(List: TStrings) of object;

This event handler returns a list of available templates in the List parameter. Here's an example
of a handler:

procedure TForml. Get Tenpl at es(List: TList);
begi n
Li st.d ear;
ADOTabl el. First;
whi | e not ADOTabl el. Eof do
begi n
Li st. Add(ADOTabl el. Fi el dByNane(' Report Nane'). AsString);
ADOTabl el. Next ;
end;
end;

Fast Report can inherit from previously created reports. For this use the function:

Tf rxReport. I nheritFromlenpl at e(const tenpl Name: String;
I nheritMdde: TfrxlnheritMde
= inmDefaul t): Bool ean

This function makes the current loaded report inherit from the specified template. The first
parameter is the name and path of the parent template, the second sets the inherit mode,
which is one of :

imDefault (by default) - open dialogue offering renaming/deletion of duplicates
imDelete - delete all duplicate objects
imRename - rename all duplicate objects.

Please Note!

The search for the parent template is done in reference to the current template. FastReport
uses relative paths so there is normally no need to worry about moving applications; the only
exception is when the current report and the parent template are placed on different folders or
a net path is used.

1.22 Multi-threading

FastReport can operate independently in more than one thread, but there are some
considerations:

- “TfrxDBDataSet” cannot be created in different threads because the “global list” is used for

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

21 FastReport 4 Programmer's manual

searching and the dataset will always be taken from the first created “TfrxDBDataSet” (use
of the global list can be switched off - it is active by default)

- if there are changes in object properties (for example Memol.Left := Memo1l.Left + 10 in
script) during report execution then it must be remembered that during the next operation, if
“TfrxReport.EngineOptions.DestroyForms = False” the report template will already have
been changed and will need to be reloaded, or use “TfrxReport.EngineOptions.
DestroyForms := True”. During renewal you can't use interactive reports from the thread
because the script's objects are deleted after renewal, that is why in some cases it is better
to use “TfrxReport.EngineOptions.DestroyForms := False” and renew the template on your
own during the next build cycle

If required the global list which is searched for copies of “TfrxDBDataSet” can be switched off:

{ DestroyFornms can be switched off, if every time a report is renewed
froma file or fromthe current report }

FReport. Engi neQpti ons. DestroyForns : = Fal se;

FReport. Engi neQptions. Si |l ent Mbde : = True;

{ This property switches off the search of the global list }
FReport. Engi neOpti ons. Used obal Dat aSet Li st : = Fal se;

{Enabl edDat aSets plays the role of a local list, it should be installed
before the tenplate is | oaded }

FReport . Enabl edDat aSet s. Add(Ff r xDat aSet) ;

FReport . LoadFr onti | e(Report Nane) ;

FReport . PrepareReport;

1.23 Report caching

A report and its data can be cached both in memory (to increase speed) and in a file on disk (to
reduce RAM usage). There are several types of caching in Fast Report:

- “TfrxReport.EngineOptions.UseFileCache” - when True the whole text and objects of a built
report are saved in a temporary file on disk; “TfrxReport.EngineOptions.MaxMemoSize” sets
how many MB are reserved for the report in RAM

- “TfrxReport.PreviewOptions.PagesinCache” - the number of pages which can be kept in
cached memory, which greatly increases preview speed, but uses a lot of memory
(especially if there are pictures in the report)

- “TfrxReport.PreviewOptions.PictureCachelnFile” - when True all pictures in a built report are
saved in a temporary file on disk, which greatly reduces memory use in reports that have a
large number of pictures; but it reduces the speed

1.24 MDI architecture

In Fast Report there is opportunity for creating MDI applications, both for preview and with a
designer. The code for an example is located in “FastReport Demos\MDI Designer catalogue”.

It is worth mentioning that it is advisable to create a “TfrxReport” for each preview window or
designer, otherwise all windows will refer to a single report.

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

Chapter

Working with a
list of variables

23 FastReport 4 Programmer's manual

The notion of variables was explained in detail in the corresponding chapter. Let's briefly call to

mind the main points.

A user can specify one or more variables in a report. A value or an expression, which will be
automatically calculated when referring to a variable, can be assigned to every variable.

Variables can be visually inserted into a report from the “Data tree” pane. It

is convenient to use

variables as aliases for compound expressions, which are often used in reports.

The “frxVariables” unit must be used in the project when working with variables. Variables are

represented by the “TfrxVariable” class.

TfrxVariable = class(TCol | ectionlten)
publ i shed

property Name: String;

(the name of the variable }

property Val ue: Variant;
{ the value of the variable }
end;

The list of variables is represented by the “TfrxVariables” class. It contains all the methods

necessary for working with the list.

TfrxVari abl es = class(TCol | ecti on)
public
function Add: TfrxVari abl e;
{ adds a variable to the end of the list }

function Insert(Index: Integer): TfrxVariable;
{ adds a variable at the given position in the list }

function I ndexOF(const Name: String): Integer
{ returns the index of the variable with the given nane }

procedure AddVari abl e(const ACategory, ANanme: String;
const Aval ue: Variant);
{ adds a variable to the specified category }

procedure Del et eCat egory(const Nane: String);
{ deletes a category and all its variables }

procedure Del eteVari abl e(const Nane: String);
{ deletes a variable }

procedure GetCategoriesList(List: TStrings; C earList: Boolean = True);

{ returns the list of categories }

procedure GetVari abl esLi st(const Category: String; List:

TStrings);

{ returns the list of variables in the specified category }

property ltenms[Index: Integer]: TfrxVariable readonly;
{ the list of variables }

property Variabl es[Index: String]: Variant; default;
{ value of specified variable }

end;

FastReport v4 © 1998-2012 Fast Reports Inc.

Manual v1.2.0

Working with a list of variables

24

When the list of variables is long it can be convenient to group the variables by categories. For

example, having the following list of variables:

Customer name
Account number
in total

total vat

they can be represented it in the following way:

Properties
Customer name
Account number

Totals
in total
total vat

There are some limitations:
- at least one category must be created
- categories form the first level of the data tree, variables form the second

- categories cannot be nested
- variable names must be unique within the whole list, not just within a category

2.1 Creating a list of variables

A link to the report variables is stored in the “TfrxReport.Variables” property. To create a list

manually, the following steps must be taken:

- clear the list

- Create a category

- create variables

- repeat the second and third steps to create variables in another category

2.2 Clearing a list of variables

A list of variables is cleared using the “TfrxVariables.Clear” method:
Pascal:
frxReportl. Vari abl es. C ear;
C++:

frxReport 1- >Vari abl es->C ear () ;

FastReport v4 © 1998-2012 Fast Reports Inc.

Manual v1.2.0

25 FastReport 4 Programmer's manual

2.3 Adding a category

At least one category must be created. Categories and variables are both stored in the one list.
A category differs from a variable by having a “space” character as the first symbol of the
name. All variables located in the list after a category are considered as belonging to that

category.
A category can be added to the list in either of two ways:
Pascal:
frxReportl. Variables[' ' + 'My Category 1'] := Null;
C++:

frxReport 1l->Vari abl es->Variables[" My Category 1"] = NULL;
or

Pascal:

var
Cat egory: TfrxVari abl e;

Category := frxReport1. Vari abl es. Add;
Category.Nanme : =" ' + 'MWy category 1';

C++:
TfrxVari abl e * Category;

Cat egory = frxReport1l->Vari abl es->Add();
Cat egory->Name = " My category 1";

2.4 Adding avariable

Variables can be added only after a category has already been added. All the variables located
in the list after a category are considered belonging to that category. Variable names must be
unique within the whole list and not just within a category

There are several ways to add a variable to the list:
Pascal:
frxReportl. Variables['MW Variable 1'] := 10;
C++:
frxReport1->Vari abl es->Vari ables["My Variable 1"] = 10;
this way adds a variable (if it doesn't already exist) or changes the value of an existing variable.

Pascal:

var
Vari abl e: TfrxVari abl e;

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

Working with a list of variables 26

Variable := frxReportl. Vari abl es. Add;
Variable.Nane := "My Variable 1';
Vari abl e. Val ue : = 10;

C++:
TfrxVariabl e * Vari abl e;
Vari abl e = frxReport1->Vari abl es->Add() ;

Vari abl e->Nane = "My Variable 1";
Vari abl e- >Val ue = 10;

Both of the ways add a variable to the end of the list, so it is added to the last category. If a
variable is to be added at a specific position in the list use the “Insert” method:

Pascal:

var
Vari abl e: TfrxVari abl e;

Variable := frxReportl. Variables.lnsert(1);

Variable.Nane := "My Variable 1';
Vari abl e. Val ue : = 10;

C++:
TfrxVariabl e * Vari abl e;
Vari abl e = frxReport1->Vari abl es->Insert (1);

Vari abl e->Nane = "My Variable 1";
Vari abl e- >Val ue = 10;

If a variable is to be added to a specific category use the “AddVariable” method:
Pascal:
frxReport 1. Vari abl es. Addvari abl e(' My Category 1', 'My Variable 2', 10);
C++:

frxReport 1- >Vari abl es- >AddVari abl e("My Category 1", "My Variable 2", 10);

2.5 Deleting a variable
Pascal:
frxReportl. Vari abl es. Del eteVariabl e(' My Variable 2');
C++:

frxReport 1->Vari abl es->Del et eVari abl e("My Variable 2");

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

27 FastReport 4 Programmer's manual

2.6 Deleting a category
To delete a category with all its variables use the following code:
Pascal:
frxReport 1. Vari abl es. Del et eCat egory(' My Category 1');
C++:

frxReport 1->Vari abl es- >Del et eCat egory("My Category 1");

2.7 Modifying a variable’s value
There are two ways to modify the value of a variable:
Pascal:
frxReportl. Variables['MW Variable 2'] := 10;
C++:

frxReport 1->Vari abl es->Vari abl es["My Variable 2"] = 10;
or

Pascal:

var
I ndex: | nteger;
Vari abl e: TfrxVari abl e;

{ search for the variable }

Index := frxReportl.Variables.|ndexOf (" My Variable 2');
{ if it is found, change a val ue }

if Index <> -1 then

begi n
Variable := frxReportl. Variabl es. |tens[| ndex];
Vari abl e. Val ue : = 10;
end;
C++:
int |ndex;

TfrxVari able * Vari abl e;

/1 search for the variable

I ndex = frxReportl1l->Variabl es->I ndexOtf ("M Variable 2");
/1 if it is found, change a val ue

if(lndex !'= -1)

Vari abl e = frxReport1->Vari abl es->Itens[| ndex];
Vari abl e->Val ue = 10;

}

It should be noted, that when accessing a report variable its value is calculated if it is of string
type. That means the variable whose value is 'Tablel."Field1™ will return a value of a DB field
and not the 'Tablel."Field1™ string. You should be careful when assigning a string-type value to

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

Working with a list of variables 28

a report variable. For example, this code will raise the exception “unknown variable 'test” when
running a report:

frxReportl. Variables['M Variable'] := "test';

because FastReport is trying to calculate a value for variable 'test'. The right way to pass a
string value is:

frxReportl. Variables['M Variable'] :="""" + "test' + ''"'";

In this case the variable value, string 'test’, will be shown without errors. But keep in mind that:
- a string should not contain single quotes : all single quotes must be doubled;
- a string should not contain #13 or #10 symbols.

In some cases it is easier to pass variables using a script.

2.8 Script variables

Instead of report variables, script variables are in the TfrxReport.Script. You can define them
using FastScript methods. Let's look at some differences between report and script variables:

Report variables Script variables
Placement in the report variables list, in the report script,
TfrxReport.Variables TfrxReport.Script.Variables
Variable name may contain any symbol may contain any symbol;

but if used inside the report script its
name must conform to Pascal
identificator requirements

Variable value may be of any type; may be of any type;

variables of string type are|no calculation is performed;
calculated each time they|behavior is like a standard
are accessed, and are, in language variable.
themselves, expressions

Accessibility programmer can see the list of | variable is not visible -
report variables in the programmer must know it exists
“Data tree” pane

Working with script variables is easy. Just assign a value to the variable like this:

Pascal:
frxReportl. Script.Variables['My Variable'] := "test';
C++:
frxReport 1->Scri pt->Vari abl es->Vari ables["My Variable"] = "test";

Here FastReport creates the variable if it does not exist, or assigns the value to an existing
variable. There is no need to use extra quotes when assigning strings to variables.

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

29 FastReport 4 Programmer's manual

2.9 Passing avariable value in TfrxReport.OnGetValue

The last way to pass a value to a report is to use the “TfrxReport.OnGetValue” event handler.
This is convenient when a dynamic value is to be passed to a report (a value that may change
from record to record). The two previous ways are suitable for passing static values.

Let's look at an example of using this event handler. Create a report and place a "Text" object
in it. Type the following text into this object:

[My Vari abl e]

Now create the “TfrxReport.OnGetValue” event handler:

procedure TForml. frxReport 1Get Val ue(const Var Nane: String;
var Val ue: Variant);
begi n
i f ConpareText(VarNane, 'My Variable') = 0 then
Value := "test'
end;

Run the report and see that the variable is displayed correctly. The “TfrxReport.OnGetValue”
event handler is called each time that FastReport finds an unknown variable. The event handler
should return a value for that variable.

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

Chapter

Working with
styles

31 FastReport 4 Programmer's manual

First of all, let's remember what a “style”, a “set of styles” and a “library of styles” are.

A style is an element that has a name and properties, and that determines some design
attributes such as color, font and frame. The style determines the way a report object is
displayed. Objects such as “TfrxMemoView” have the Style property, which holds a style name.
When a value is given to this property the style design attributes are applied to the object.

A set of styles consists of several styles, which are used in a report. The “TfrxReport”
component has the “Styles” property, which points to an object of the “TfrxStyles” type. The set
of styles also has a name. The set of styles determines the design appearance of a whole
report.

A styles library includes several sets of styles. A specific style set can conveniently be selected
for a report from a styles library.

“TfrxStyleltem” represents a style.

TfrxStyleltem = class(TCol |l ectionltem
public

property Nanme: String;

{ style nane }

property Col or: TCol or;
{ background col or }

property Font: TFont,;
{ font }

property Franme: TfrxFraneg;
{ frame }
d.

en

A set of styles is represented by the “TfrxStyles” class. It has methods for performing set
operations such as reading, saving, adding and deleting, as well as searching for a style. A set
of styles file has an “fs3” extension by default.

TfrxStyles = class(TCol | ecti on)
public
constructor Create(AReport: TfrxReport);
{ creates the styles set;
“nil” can be specified instead of “AReport,”
however a user could not then use the “Apply” nethod }

function Add: TfrxStyleltem
{ adds a new style }

function Find(const Nane: String): TfrxStyleltem
{ returns the style with the given nane }

procedure Apply;
{ applies a set to a report }

procedure GetlList(List: TStrings);
{ returns the list of style nanes }

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

Working with styles 32

procedure LoadFrontil e(const FileName: String);
procedure LoadFronttrean(Stream TStrean;
{ reads a set }

procedure SaveToFile(const FileNane: String);
procedure SaveToStream(Stream TStream;
{ saves a set }

property ltems[Index: Integer]: TfrxStyleltem default;
{ the list of styles }

property Name: String;
{ a set’s nane }

end;

In conclusion, the “TfrxStyleSheet” class represents a styles library. It has methods for library
reading/saving, as well as adding, deleting and searching for style sets.

TfrxStyl eSheet = cl ass(TObj ect)
public

constructor Create;

{ constructs a library }

procedure C ear;
{ clears a library }

procedure Del ete(lndex: |nteger);
{ deletes a set with specified index number }

procedure GetlList(List: TStrings);
{ returns the list of nanes of styles sets }

procedure LoadFrontil e(const FileName: String);
procedure LoadFronttrean(Stream TStrean;
{ loads a library }

procedure SaveToFile(const FileNane: String);
procedure SaveToStream(Stream TStream;
{ saves a library }

function Add: TfrxStyles;
{ adds a new set of styles to the library }

function Count: Integer;
{ returns the nunber of styles sets in the library }

function Find(const Nane: String): TfrxStyles;
{ returns a set with the specified nanme }

function I ndexOF (const Nanme: String): |Integer;
{ returns a set nunmber with the specified name }

property ltems[Index: Integer]: TfrxStyles; default;
{ the list of styles sets }

end;

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

33

FastReport 4 Programmer's manual

3.1

Creation of style sets

The following code shows how to create a styles set, with the addition of two styles to the set.

After these operations are completed the styles are applied to the report.

Pascal:

var
Style: TfrxStyleltem
Styles: TfrxStyles;

Styles := TfrxStyles.Create(nil);

{ the first style }

Style := Styl es. Add;

Style.Nane := 'Stylel';
Style.Font.Name := 'Courier New ;

{ the second style }

Style := Styl es. Add;

Style.Nane := 'Style2';

Style. Font. Nane := 'Ti nes New Roman';
Style.Frane. Typ := [ftLeft, ftRight];

{ apply a set to the report }
frxReportl. Styles := Styles;

C++:

TfrxStyleltem* Style;
TfrxStyles * Styles;

Styles = new TfrxStyl es(NULL);

/1 the first style

Style = Styl es->Add();

Styl e->Nane = "Styl el";

Styl e- >Font - >Nane = "Courier New';

/1 the second style

Style = Styl es->Add();

Styl e->Nane = "Styl e2";

Styl e- >Font - >Nane = "Ti nes New Ronan";
Styl e- >Frane->Typ << ftlLeft << ftRight;

/1 apply a set to the report
frxReport1l->Styles = Styles;

The set can be created and used in a different way:

Pascal:

var
Style: TfrxStyleltem
Styles: TfrxStyles;

Styles := frxReportl. Styl es;
Styles.C ear;

{ the first style }
Style := Styl es. Add;

FastReport v4 © 1998-2012 Fast Reports Inc.

Manual v1.2.0

3.2

Working with styles

Style.Name := 'Stylel';
Style.Font.Name := 'Courier New ;

{ the second style }
Style := Styl es. Add;
Style.Name := 'Style2';

Style. Font. Name : = 'Ti nes New Roman';
Style.Frane. Typ := [ftLeft, ftRight];

{ apply a set to the report }
frxReportl. Styl es. Appl y;

C++:

TfrxStyleltem* Style;
TfrxStyles * Styles;

Styles = frxReport1l->Styles;
Styles->C ear();

/1l the first style

Style = Styl es->Add();

Style->Nane = "Styl el";

Styl e->Font - >Nanme = "Courier New';

/1 the second style
Style = Styl es->Add();
Styl e->Nane = "Styl e2";

Styl e- >Font - >Nane = "Ti nes New Ronan";
Styl e->Frame->Typ << ftlLeft << ftRight;

/1 apply a set to the report
frxReport 1->Styl es->Appl y();

Modifying/adding/deleting a style
Modifying a style with a given name:
Pascal:
var
Style: TfrxStyleltem
Styles: TfrxStyles;
Styles := frxReportl. Styles;

{ search for a style}
Style := Styles.Find('Stylel');

{ nmodify the font size }
Style. Font. Size := 12;

C++:

TfrxStyleltem* Style;
TfrxStyles * Styles;

Styles = frxReport1l->Styles;

34

FastReport v4 © 1998-2012 Fast Reports Inc.

Manual v1.2.0

35 FastReport 4 Programmer's manual

/1 search for a style
Style = Styles->Find("Stylel");

/1 nodify the font size
Styl e->Font->Si ze = 12;

Adding a style to the report styles set:
Pascal:
var
Style: TfrxStyleltem
Styles: TfrxStyles;

Styles := frxReportl. Styl es;

{ add }

Style := Styl es. Add;

Style.Name := 'Style3';
C++:

TfrxStyleltem* Style;
TfrxStyles * Styles;

Styles = frxReport1l->Styles;
/] add

Style = Styl es->Add();
Styl e->Nane = "Styl e3";

Deleting a style with a given name:

Pascal:
var
Style: TfrxStyleltem
Styles: TfrxStyles;
Styles := frxReportl. Styles;
{ delete }

Style := Styles.Find('Style3");
Styl e. Free;

C++:

TfrxStyleltem* Style;
TfrxStyles * Styles;

Styles = frxReport1l->Styles;
/] delete

Style = Styles->Find("Styl e3");
delete Style;

After modification the “Apply” method should be called:

{ use nodifications }
frxReportl. Styl es. Appl y;

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

Working with styles 36

3.3 Saving/restoring a set of styles
Pascal:

frxReportl. Styl es. SaveToFile('c:\1.fs3");
frxReportl. Styles. LoadFronFile('c:\1.fs3");

C++:

frxReport 1->Styl es- >SaveToFil e("c:\\1.fs3");
frxReport 1->Styl es->LoadFronFile("c:\\1.fs3");

3.4 Clearing report styles
Report styles can be cleared in two ways:

frxReportl. Styles. d ear;

or

frxReportl. Styles := nil;

3.5 Creating a style library

The following example shows how to create a library and add two sets of styles to it.

Pascal:

var
Styles: TfrxStyles;
Styl eSheet: TfrxStyl eSheet;

Styl eSheet := TfrxStyl eSheet. Create;

{ the first set

Styles := Styl eSheet . Add;

Styles.Nane := 'Stylesl';

{ here styles can be added to the Styles set }

{ the second set }
Styles := Styl eSheet . Add;

Styles.Nane := 'Styles2';
{ here styles can be added to the Styles set }

C++:

TfrxStyles * Styles;
TfrxStyl eSheet * Styl eSheet;

Styl eSheet = new TfrxStyl eSheet ;

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

37 FastReport 4 Programmer's manual

/1 the first set

Styles = Styl eSheet - >Add() ;

Styl es->Nane = "Styl esl";

/1 here styles can be added to the Styles set

// the second set
Styles = Styl eSheet - >Add() ;

Styl es->Nane = "Styl es2";
/'l here styles can be added to the Styles set

3.6 Displaying a list of style sets, and application of a selected style

Style libraries are frequently used for displaying available style sets in controls such as
“ComboBox” or “ListBox". The style selected by the user can be applied to the report.

Displaying the list:
Styl eSheet . Get Li st (ConboBox1. |t emns);

Using the selected style in the report:

frxReportl. Styles := Styl eSheet.|tens[ConboBox1.|ten ndex];

or

frxReportl. Styles := Styl eSheet. Fi nd[ComboBox1. Text];

3.7 Modifying/adding/deleting a styles set
To modify a set with a specific name:
var
Styles: TfrxStyles;
Styl eSheet: TfrxStyl eSheet;

{ search for the required set }
Styles := Styl eSheet. Find(' Styl es2');

{ nmodify a style with the Stylel nane fromthe set found }

with Styles.Find('Stylel') do
Font. Nanme := '"Arial Black';

Adding a set to a library:
var
Styles: TfrxStyles;
Styl eSheet: TfrxStyl eSheet;
{ the third set }

Styles := Styl eSheet . Add;
Styles.Nane := 'Styles3";

Deleting a set from a library:

var

FastReport v4 © 1998-2012 Fast Reports Inc. Manual v1.2.0

Working with styles

i: Integer;
Styl eSheet: TfrxStyl eSheet;

{ search for the third set }
i := Styl eSheet.|ndexOF (' Styl es3');
{ if found delete it }
if i <> -1 then
Styl eSheet . Del ete(i);

3.8 Saving and loading a style library

The file extension for the styles library is “fss” by default.

var
Styl eSheet: TfrxStyl eSheet;

Styl eSheet . SaveToFile('c:\1.fss');
Styl eSheet . LoadFronFile('c:\1.fss");

38

FastReport v4 © 1998-2012 Fast Reports Inc.

Manual v1.2.0

	Working with the TfrxReport component
	Loading and saving a report
	Designing a report
	Running a report
	Previewing a report
	Printing a report
	Loading and saving a finished report
	Exporting a report
	Creating a custom preview window
	Building a composite report (batch printing)
	Numbering of pages in a composite report
	Combining pages into a composite report

	Interactive reports
	Accessing report objects from code
	Creating a report form from code
	Creating a dialogue form from code
	Modifying a report page’s properties
	Constructing a report with the help of code
	Printing an array
	Printing a TStringList
	Printing a file
	Printing a TStringGrid
	Printing a TTable or TQuery
	Report inheritance
	Multi-threading
	Report caching
	MDI architecture

	Working with a list of variables
	Creating a list of variables
	Clearing a list of variables
	Adding a category
	Adding a variable
	Deleting a variable
	Deleting a category
	Modifying a variable’s value
	Script variables
	Passing a variable value in TfrxReport.OnGetValue

	Working with styles
	Creation of style sets
	Modifying/adding/deleting a style
	Saving/restoring a set of styles
	Clearing report styles
	Creating a style library
	Displaying a list of style sets, and application of a selected style
	Modifying/adding/deleting a styles set
	Saving and loading a style library

