FastScript .NET
Programmer Manual

© 2008-2025 Fast Reports Inc.

www.fast-report.com 1/26

General

FastScript .NET is a library for executing C# scripts. FastScript .NET is built using the "lexer-parser-interpreter"
scheme, it does not use compilation into machine code. It can be used in environments where code generation is
prohibited (Native AOT, iOS, WASM).

www.fast-report.com 2/26

Supported language features

FastScript.Net supports the following language features. Think of it as it is mostly C# 1.0 compliant, with some
great additions from later C# versions. Note if a feature is not listed here, then most likely it is not supported (more
info in the sections below):

C#1.0:

Classes

Structs

Enums

Interfaces

Events

Operator overloading
User-defined conversion operators
Properties

Indexers

Output parameters (out and ref)
params arrays

Delegates

Operators and expressions

Verbatim identifier
C#20:

Generics

Partial types

Nullable value types

Getter/setter separate accessibility

Static classes
C#3.0:

e Auto-implemented properties
e Extension methods

e Implicitly typed local variables
C#40:

e Optional arguments
C#6.0:

e Auto-property initializers
e Expression bodied members
e Null propagator

C#7.0:

e Qut variables
e Local functions

C#8.0:

www.fast-report.com 3/26

e Readonly members
e Static local functions
e Null-coalescing assignment

C#9.0:

e Top-level statements

www.fast-report.com 4/26

Unsupported features
The following C# 1.0 features are not supported:

Preprocessor directives (#if, #region and so on)
Attributes
Unmanaged code: pointers, unsafe keyword, P/Invoke

checked, unchecked statements

goto statement

www.fast-report.com 5/26

Partially supported features
Here and below: "host" means the .NET application, "script" means something defined in a script.

Class inheritance

Base class can either be a script class or system.object . You cannot inherit from a host class. Example:

class MyScriptClass: OtherScriptClass // ok
class MyScriptClass: Object // ok

class MyScriptClass // ok, same as Object
class MyScriptClass: ArrayList // error

Structs

Internally, struct is a class. FastScript uses special handling of struct instances (a copy of struct instance is created if
you pass a struct to a method parameter, or assign it to a variable). Declaring a variable of struct type does not
automatically create a struct instance:

MyStruct s; // s is null
s = new MyStruct(); // and must be initialized before use

Script vs host interop
Class defined in a script is visible to host as a FastScript.Runtime.DataContext instance.
You may override the following system.object methods of a script class:

® ToString
® Equals

® GetHashCode
These overridden methods will also take an effect if used by host.

A script class may implement some of host interfaces, but it has effect in a script only. Passing such an instance to a
host will not work, the host will not be able to use interface members implemented in a script.

Nullable types

Nullable types can use host types only.

Generic types and methods

You can use host types/methods only. You cannot define a generic type or method in a script.

Type forwarding

If a host type is marked as forwarded, it must be used directly by the host app in order to be available in a script.
Example:

var list = new System.ComponentModel.BindinglList<int>(); // error, BindingList does not exist

www.fast-report.com 6/26

But if you add this line of code to your host app, the script will be compiled fine:

new System.ComponentModel.BindingList<int>();

Delegates

You can create delegates of any methods (script or host). Passing a delegate to host is not supported though. You
also cannot create Action<> and Func<> delegates (these host classes require a native method with certain
signature, which can't be done in a script).

Implicit and explicit conversion

User defined implicit and explicit conversion is limited to actually defined cases. If there is a conversion of type T to
'int', you may use it; however you can't convert T to ‘float’ if there is no T->float conversion defined. Consider the
following example:

var m = new My();

int intValue = m; // ok
float floatValue = m; // error

int explicitIntValue = (int)m; // ok: explicit is not defined, but we have implicit one
float explicitFloatValue = (float)m; // error

floatValue = (int)m; // use this way

public class My
{
private object _value;
public static implicit operator int(My m) => (int)m._value;

www.fast-report.com 7/26

Grammar (C#)

General

program
: using_directive* top_level_statements? namespace_member_declaration* EOF

using_directive

: USING namespace_name ';

top_level statements
. statement_list

namespace_member_declaration
: namespace_declaration
| type_declaration

namespace_declaration
: NAMESPACE namespace_name namespace_body ';'?

namespace_name

: identifier ('.' identifier)*

namespace_body
"{' using_directive* namespace_member_declaration* '}’

identifier
: IDENTIFIER

Simple types

www.fast-report.com 8/26

namespace_or_type_name

: name_part ('.' name_part)*
name_part
: identifier type_argument_list?

type_
: base_type '?'? rank_specifier*

type_no_rank
: base_type '?'?

base_type
. predefined_type
| namespace_or_type name

predefined_type
: BOOL
| BYTE
| CHAR
| DECIMAL
| DOUBLE
| FLOAT
| INT
| LONG
| OBJIECT
| SBYTE
| SHORT
| STRING
| UINT
| uLONG
| USHORT
type_argument_list
<" type_ ('," type_)* '>'

Expressions

expression_list

: expression (',' expression)*

expression
: binary_expression (assignment | null_coalescing_expression | conditional_expression)?

assignment
: assignment_operator expression

assignment_operator

°

null_coalescing_expression
'??' expression

conditional_expression

'?' expression expression

www.fast-report.com 9/26

binary_expression
: unary_expression (binary_operator unary expression | is_operation | as_operation)*

binary_operator

unary_expression
: cast_expression
| primary_expression
| unary_operator unary_expression

unary_operator

cast_expression
"(' type_ ')' unary_expression

primary_expression
: primary_expression_start bracket_expression* (

(member_access | method_invocation | '++' | '- -') bracket_expression*

)*

primary_expression_start
: NUMBER | STRING
TRUE | FALSE | NULL
THIS | BASE
typeof_expression

|
|
|
| name_part
| "(' expression ')’
| predefined_type
| object_creation
typeof_expression
: TYPEOF '(' type_ ')’

member_access
'?'? "." name_part

bracket_expression
'?'? '[" expression_list ']’

is_operation
¢ IS type_ identifier?

as_operation
¢ AS type_
www.fast-report.com 10/ 26

object_creation
: NEW type_no_rank (method_invocation | array_creation)

method_invocation
'(' argument_list? ')’

argument_list
: argument (',

argument)*

argument
: out_argument
| in_argument

ref_argument
| expression

out_argument
: OUT (embedded variable declaration | expression)

in_argument
: IN expression

ref_argument
: REF expression

array_creation
'[' expression_list? ']' rank_specifier* array_initializer?

array_initializer
"{' expression_list? ','? '}’

Statements

block
'{' statement_list? '}’

statement_list
statement+

statement
: embedded_statement
| declaration_statement

declaration_statement

: local_variable_declaration ';

| local_constant_declaration ';
| local function_declaration

embedded_statement
¢ block
| simple_embedded statement

simple_embedded_statement

o
E}

| toplevel statement

| expression ';

toplevel_statement
return_statement
if_statement
switch_statement
while_statement

for_statement

|

|

|

| do_statement
|

| foreach_statement
|

hroale ctatamant

www.fast-report.com 11/ 26

continue_statement

1
|
| throw_statement
| try_statement

|

using_statement

if_statement
: IF '"(' expression ')' embedded_statement (ELSE embedded_statement)?

switch_statement
: SWITCH '(' expression ')' '{' switch_section* '}’

while_statement
: WHILE '(' expression ')' embedded_statement

do_statement
: DO embedded_statement WHILE '(' expression ')' ';'

for_statement

FOR '(' for_initializer? ';' expression?

;' for_iterator? ')' embedded_statement

foreach_statement
FOREACH '(' embedded_variable_declaration IN expression ')' embedded_statement

break_statement
: BREAK ';'

continue_statement
: CONTINUE ';'

return_statement

: RETURN expression? ';

throw_statement

: THROW expression? ';

try_statement
: TRY block (catch_clauses finally clause? | finally clause)

using_statement
: USING '(' resource_acquisition ')' embedded_statement

switch_section
switch_label+ statement_list

switch_label
: CASE expression
| DEFAULT ':'

for_initializer
: local_variable_declaration

| expression (',' expression)*
for_iterator
: expression (',' expression)*

catch_clauses
specific_catch_clause+ general_catch_clause?
| general_catch_clause

specific_catch_clause
: CATCH '(' base_type identifier? ')' block

general_catch_clause
: CATCH block

finally_clause
FINALLY block

www.fast-report.com 12 /26

resource_dcguisicion
: local_variable_declaration
| expression

local_variable_declaration
: local_variable_type variable_declarators

local_variable_type
: VAR
| type_

embedded_variable_declaration
: local_variable_type identifier

local_constant_declaration
: CONST type_ constant_declarators

local_function_declaration
: STATIC? type_ method_declaration

Types

type_declaration
: all_member_modifier* (class_definition | struct _definition | interface_definition
enum_definition | delegate_definition)

class_definition
¢ CLASS identifier base_classes? class_body ';'?

base_classes

;' base_type (',' base_type)*

class_body

'{' class_member_declaration* '}

struct_definition
: STRUCT identifier base_classes? class_body ';'?

interface_definition
: INTERFACE identifier base_classes? class_body ';'?

enum_definition
: ENUM identifier (':' type_)? enum_body

enum_body
'{"' enum_member_declarators '}’

delegate_definition
: DELEGATE type_ identifier '(' formal_parameter_list? ')' ;'

Members

all member_modifier
¢ PUBLIC
PROTECTED
INTERNAL
PRIVATE
READONLY
STATIC
PARTIAL
ABSTRACT
VIRTUAL
OVERRIDE

www.fast-report.com 13/ 26

| NEW

class_member_declaration
: all _member_modifier* (constant_declaration | typed_member_declaration | constructor_declaration
operator_declaration | event_declaration)
| type_declaration

enum_member_declarators

: enum_member_declarator (',' enum_member_declarator)* ','?
enum_member_declarator
: identifier ('=' expression)?

constant_declaration

: CONST type_ constant_declarators ';

constant_declarators
: constant_declarator (',' constant_declarator)*

constant_declarator

: identifier '=' expression

constructor_declaration
: identifier '(' formal_parameter_list? ')' constructor_initializer? method_body

constructor_initializer
':' (THIS | BASE) method_invocation

operator_declaration
: implicit_operator
| explicit_operator
| overload_operator

implicit_operator
: IMPLICIT OPERATOR type_ op_method_declaration

explicit_operator
EXPLICIT OPERATOR type_ op_method_declaration

overload_operator
: type_ OPERATOR (binary operator | unary_operator) op_method_declaration

op_method_declaration
'(" formal_parameter_list? ')' method_body

event_declaration
EVENT base_type explicit_interface? identifier (';' | event_accessor)

event_accessor
'{' (event_add | event_remove)+ '}'

event_add
: ADD method_body

event_remove
: REMOVE method_body

typed_member_declaration
: type_ (method_declaration | property_declaration | field_declaration |
extension_method_declaration)

method_declaration
: explicit_interface? identifier '(' formal_parameter_list? ')' method_body

explicit_interface

: identifier '.°'
formal_parameter_list
: parameter array
www.fast-report.com 14/ 26

| fixed_parameters (',

parameter_array)?

fixed_parameters
: fixed_parameter (',' fixed_parameter)*

fixed_parameter

. parameter_modifier? type_ identifier ('=' expression)?
parameter_modifier

: REF

| out

| IN

parameter_array
: PARAMS array_type identifier

array_type
: base_type rank_specifier+

rank_specifier

LT

method_body
¢ block
| |;|

| lambda_expression

lambda_expression

=>' expression ';

property_declaration
¢ index_property_declaration
| regular_property declaration

index_property_declaration
¢ explicit_interface? THIS '[' formal_parameter_list ']' property_accessor

regular_property_declaration
: explicit_interface? identifier property_accessor

property_accessor
. property_get_set ('=
| lambda_expression

expression ';')?

property_get_set
'{" (property_getter | property_setter)* '}’

property_getter
: all _member modifier* GET (';' | method_body)

property_setter
: all _member_modifier* SET (';' | method_body)

field_declaration
: variable_declarators ';

variable_declarators
: variable_declarator (',' variable_declarator)*

variable_declarator

: identifier ('=' expression)?

extension_method_declaration
: identifier '(' THIS formal_parameter_list ')' method_body

www.fast-report.com 15/ 26

Using FastScript .NET

To use FastScript .NET in your project, add the Fastscript Nuget package (or Fastscript.pemo if you are using the

demo version).

Demo version limitations: when compiling a script, an exception with the text "FastScript: Demo version” is injected

into script methods. This happens at random (rare) moments.

www.fast-report.com 16/ 26

Quick start

Use the following code to run simple scripts:

using FastScript.CSharp;

var text =
@"

using System;

Console.WriteLine(""Hello!"");

",
E}

var script = new CSharpScript();

if (script.Compile(text))
{

script.RunMain();

The example above uses a script with top level statements. If the compilation is successful, the first statement
(Console.WriteLine) is run and the message Hello! is printed to the console.

www.fast-report.com 17 /26

Compiling the script

The script.compile method performs parsing of the source text and then its compilation. During the parsing
process, an abstract syntax tree (AST) is created, which represents the source text as a tree data structure.

If no errors occur during the parsing stage, FastScript .NET performs compilation. During the compilation stage, the
AST is parsed and memory structures that represent the types declared in the script are created. These types are

available in the script.Types property.

The compilation process does not perform machine code generation. This allows FastScript .NET to be used in
environments where code generation is not possible (Native AOT, iOS, WASM). During operation, FastScript NET
does not create assemblies that remain sit in memory (like CodeDOM/Roslyn do). Allocated memory structures can
be deleted by the garbage collector (GC) when you finish using the script instance.

www.fast-report.com 18 /26

Error handling

Errors may occur during the compilation of the script: parsing errors (syntax errors) and compilation errors

(semantic errors).

Syntax errors occur when a script is not grammatically correct in terms of the C# language (for example, if a
method call is missing a closing parenthesis). If syntax errors are present, further processing of the script
(compilation) is not performed. When an error is encountered, an attempt is made to continue parsing the script
further; as a result, multiple errors may be reported. In this regard, the behavior of FastScript is similar to that used
in CodeDOM/Roslyn.

Semantic errors may occur at the compilation stage, for example, when calling a non-existent method.

Error information is contained in the script.Diagnostic.Errors property. Use the following code to check for
errors and print information to the console:

var script = new CSharpScript();

if (!script.Compile(script_text))
{
foreach (var err in script.Diagnostic.Errors)
{
// basic error info
Console.WriteLine($"{err.CompilationUnit.Name} ({err.Line},{err.Column}): error {err.Code}:
{err.Message}");
// extended info
Console.WriteLine(err.SourceCode());

}
return;
}
else
{
script.RunMain();
}

In this case, extended error information is printed:

Sample.cs (4,21): error cs69: The name 'My' does not exist in the current context
var list = new List<My>();

AN

www.fast-report.com 19/ 26

Running the script

The execution of a script is initiated by the script.runMain method. This method scans the types declared in the
script (the list of types is available in the script.Types property). It looks for a type that has a static method Mmain ,

and passes control to this method.

In the example below, running the script using the RrunMain method will find the Testclass type, which has a

static Main method, and execute it:

using FastScript.CSharp;

var text =
@"
namespace Test

{

public class TestClass

{

public static void Main()

{

System.Console.WriteLine(""Hello!"");

var script = new CSharpScript();
if (script.Compile(text))

{

script.RunMain();

If the main method being run has parameters, their values must be specified in the Rrunvain method, for example:

// script method:
// public static void Main(int id, string text)

script.RunMain(1, "abc");

The RrunMain method returns the value returned by the main method declared in the script. If the main method is

declared as void , the return value is undefined.

If the script has top level statements, a special class is created for them that has a static Main method. When the

scriptis run using the runMain method, this method receives control.

The following is an example of a script similar to the one described above that uses top level statements:

www.fast-report.com 20/ 26

using FastScript.CSharp;

var text =
@"
System.Console.WriteLine(""Hello!"");

w,
E}

var script = new CSharpScript();

if (script.Compile(text))
{

script.RunMain();

www.fast-report.com 21/ 26

Create script class instances

The script.runMain method is useful if the script has an explicitly or implicitly declared static Main method.
Another scenario of using the script is as follows:

e an instance of the type declared in the script is created;
e its properties and methods are manipulated.

Consider the following example, which shows how to create an instance of the myclass type and call its print
method:

using FastScript.CSharp;
using FastScript.Runtime.Types;

var text =
@"

using System;

namespace MyNamespace

{
public class MyClass
{
public void Print(string message) => Console.WritelLine(message);
}
3

var script = new CSharpScript();

if (script.Compile(text))

{

// get MyClass type

var myClass = script.Types["MyClass"] as ScriptTypeInfo;

// make an instance of it (using default constructor)

var myInstance = myClass.CreateInstance();

// get Print method

var printMethod = myClass.GetMethod("Print");

// invoke it

printMethod.Invoke(myInstance, new object[] { "Hello FastScript!" });
}

Explanations of the example:

e Types declared in the script are available in the script.Types property.

e The script class is represented by the FastScript.Runtime.Types.ScriptTypeInfo class.

® The scriptTypeInfo.CreateInstance method is used to create an instance of the class. In the method
parameters, you can specify arguments for the class constructor (or omit them for the parameterless
constructor).

® The GetMethod method is used to find the print method. This APl is similar to system.Reflection and
includes the methods: GetMember , GetMembers , GetMethod , GetMethods , GetConstructor , GetConstructors

GetField , GetFields , GetProperty , GetProperties , GetEvent , GetEvents , GetNestedType , GetNestedTypes

e The print method is called using the 1nvoke method, similar to the system.rReflection API.

www.fast-report.com 22 /26

Using modules

The script text can be split into several files ("modules”). In this case, you need to use the compilationunit class and

an overloaded version of the script.compile method:

public bool Compile(params CompilationUnit[] units)

Here is the example of using two compilation units:

using FastScript;
using FastScript.CSharp;

var textl =
@"

using Test;

// top-level statements: can be used in one unit only
TestClass.Testing();
TestClass.Tested();

",
E}

var text2 =
@"

using System;

namespace Test

{
public class TestClass
{
public static void Testing()
{
Console.WriteLine(""Testing..."");
}
public static void Tested()
{
Console.WriteLine(""Tested"");
}
}
}

var unitl = new CompilationUnit("unitl.cs", textl);
var unit2 = new CompilationUnit("unit2.cs", text2);
var script = new CSharpScript();

if (script.Compile(unitl, unit2))
{

script.RunMain();

www.fast-report.com

23 /26

Restrict dangerous API

Any APl available in your .NET application can be used in a script. If a script can be obtained from an untrusted
source, this raises the security issue. FastScript .NET allows you to restrict the use of dangerous API, such as file
system or network operations. You can restrict usage of entire assemblies, namespaces, or individual types.

Use the script.TypeProvider property to control how .NET types are loaded. It has the following properties:

® TIncludeAssemblies :a string[] property containing a list of assembly names. Types in these assemblies will
be available in the script. If the list is empty, types in all assemblies loaded in your .NET application will be
available, except those specified in the ExcludeAssemblies property.

® ExcludeAssemblies :a string[] property containing a list of assembly names. Types in these assemblies will
not be available in the script.

® ExcludeNamespaces :a string[] property containing a list of namespaces. Types in these namespaces (and
their child namespaces) will not be available in the script.

Let's look at example that restricts types in assemblies and the system.10 namespace:

using FastScript.CSharp;

var text =
@"

using System;
Console.WriteLine(""0OK"");

// this will fail with API restriction
var dir = System.IO.Directory.GetCurrentDirectory();

Console.WriteLine(""Current dir:

w,
E}

+ dir);

var script = new CSharpScript();

// use types defined in these two assemblies only
script.TypeProvider.IncludeAssemblies = ["System.Private.Corelib", "System.Console"];

// restrict usage of System.IO namespace and its types
script.TypeProvider.ExcludeNamespaces = ["System.I0"];

if (!script.Compile(text))

{
foreach (var err in script.Diagnostic.Errors)
{
Console.WriteLine($"({err.Line},{err.Column}): error {err.Code}: {err.Message}");
Console.WriteLine(err.SourceCode());
}
return;
}

script.RunMain();

When running this example you will get a compilation error:

www.fast-report.com 24 / 26

(7,17): error cs69: The name 'IO' does not exist in the current context
var dir = System.IO.Directory.GetCurrentDirectory();

AAA

To restrict usage of particular classes, you may use the following technique.

Suppose you want to disable the system.10.File class, but leave the ability to use other classes in the system.10
namespace. In this case, using the ExcludeNamespaces property will not help.

Add the following code to your script (this can be done by adding the code to the end of the script, or by placing it
in a separate module - compilation unit):

namespace System.IO

{
public class File { }

This script will replace the original system.10.File class with a new, empty class. Attempting to use the methods or
properties of the original class will result in a compile-time error.

www.fast-report.com 25/ 26

Using Native AOT

In a script, you may use only classes available in the host app. Native AOT compiled host app may not contain a

class (or a member of class) that you want to use in a script because the class/member was trimmed.

Another problem is generics (types/methods). In Native AOT, you cannot create closed generic of any type; the
generic you want to construct must present in a compiled host app. For example, your host app uses List<int>
but does not use List<double> . In this case, you will be able to use List<int> in a script, but constructing a

List<double> will throw an error.

So it's your duty to ensure classes/methods are available in the compiled host app to use them in a script. Various

techniques may be used to do this, for example, constructing instances of types, using attributes:

[DynamicDependency(DynamicallyAccessedMemberTypes.All, typeof(List<>))]
public void EnsureAOTVisible()

{

var list = new List<int>();

Note that generic parameters of reference types can be used if an open generic type is available in a host app. For
example, havinga List<> type available in your app, you may construct List<object> Or List<List<...>> Of

List<Dictionary<...>> .

www.fast-report.com 26 / 26

	Title
	General
	Supported features
	Unsupported features
	Partially supported features
	Grammar (CSharp)

	Using FastScript .NET
	Quick start
	Compiling the script
	Error handling
	Running the script
	Create script class instances
	Using modules
	Restrict dangerous API
	Using Native AOT

